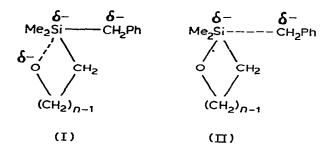
Journal of Organometallic Chemistry, 209 (1981) 13-16 Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

BASE CLEAVAGE OF THE BENZYL-SILICON BOND IN PhCH₂SiMe₂(CH₂)_nOH (n = 2 or 3) COMPOUNDS *

COLIN EABORN* and FOAD M.S. MAHMOUD


School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ (Great Britain) (Received October 10th, 1980)

Summary

The compounds $PhCH_2SiMe_2(CH_2)_nOH$ with n = 2 or 3 are cleaved 0.75 and 95–135 times, respectively, as readily as $PhCH_2SiMe_3$ by NaOMe/MeOH at 50°C. The high reactivity of the compound with n = 3 may arise from intramolecular attack of the alkoxide centre on silicon in the anion $PhCH_2SiMe_2$ -(CH_2)₃O⁻.

Introduction

Cleavage of RSiMe₃ compounds such as benzyltrimethylsilane in NaOMe/ MeOH is known to involve separation of the carbanion \mathbb{R}^- in the rate-determining step, though it has not yet been established whether the methoxide ion attack takes place in a synchronous process (with the MeO—Si bond almost fully formed in the transition state) or a prior step [1]. For either mechanism it seemed to us that cleavage might take place especially readily in the case of compounds of the type PhCH₂SiMe₂(CH₂)_nOH because of the possibility of intramolecular alkoxide ion attack such as that shown in I and II

* Reprints not available for distribution.

R	10 ³ [PhCH ₂ SiMe ₂ R](M)	[NaOMe](M)	$10^{5}k_{\rm s}(1{\rm mol}^{-1}{\rm s}^{-1})$
Me		2.0	0.033 ^a
(CH ₂) ₂ OH	1.2	2.38	0.030
(CH ₂) ₃ OH	1.2	2.68	4.4
	1.9	1.15	2.8
	1.9	2.68	4.3

TABLE 1 RATES OF CLEAVAGE OF PhCH₂SiMe₂R COMPOUNDS IN NaOMe/MeOH AT 50.0°C

Thus we prepared the compounds with n = 2 and 3, and compared their rates of cleavage with that of PhCH₂SiMe₃.

Results and discussion

The values of specific rate constants, k_s (given by the observed first order rate constant divided by the base concentration used), for the three compounds are shown in Table 1. It will be seen that the compound PhCH₂SiMe₂(CH₂)₂OH is cleaved at a rate very similar to that of PhCH₂SiMe₃; if allowance is made for the normal variation of k_s with the base concentration [2], PhCH₂SiMe₃ is the more reactive by a factor of 1.3. However, (again after allowance where relevant for the different base concentrations) the compound PhCH₂SiMe₂(CH₂)₃OH is cleaved some 95 and 135 times as readily as PhCH₂SiMe₃ by 1.1 or 2.7 *M* base, respectively. This high reactivity can be associated most simply with intramolecular attack of type I or II, the six-membered (n = 3) apparently being substantially more favourable than the 5-membered (n = 2) cyclic transition state. *

It should be noted that the effectiveness of the intramolecular alkoxide attack for n = 3 relative to that of the intermolecular attack by the methoxide ion is somewhat greater than is apparent, because at a 1.2×10^{-3} M concentration of the substrate, a 2.68 M concentration of base, and a 25 M concentration of MeOH, only 1 in 10 of the PhCH₂SiMe₂(CH₂)₃OH molecules will be present in the anionic form PhCH₂SiMe₂(CH₂)₃O⁻ if the substrate alcohol and the MeOH are assumed to have the same pK_a's.

It would be of considerable interest to examine the reactivities of the corresponding tin compounds $PhCH_2SnMe_2(CH_2)_3OH$, since here there is also the possibility of intramolecular proton transfer from the HO group to the separating benzyl group to provide electrophilic assistance after or synchronous with attack of the MeO⁻ at tin. Unfortunately, our initial attempts to make such tin compounds were unsuccessful, and the project had to be postponed.

Experimental

IR Spectra

These were recorded as liquid films.

^{*} The immediate organosilicon product from the intramolecular process would, of course, be different from that of the bimolecular process, but rapid equilibration of the products would occur under the reaction conditions.

Preparation of PhCH₂SiMe₂(CH₂)₂OH

(a) A solution of PhCH₂MgCl (0.70 mol) in ether (500 cm³) was added dropwise with stirring to (bromomethyl)dimethylchlorosilane (84 g, 0.45 mol) and the mixture was refluxed for 8 h. Addition of saturated aqueous NH₄Cl, followed by separation, drying (Na₂SO₄) and fractional distillation of the ethereal layer gave PhCH₂(BrCH₂)SiMe₂ (86%), b.p. 103°C/3.2 mmHg, n_D^{22} 1.5375; ¹H NMR (in CDCl₃) δ 0.13 (s, 6 H, SiMe₂), 2.20 (s, 2 H, PhCH₂), 2.37 (s, 2 H, CH₂Br), 7.05–7.27 ppm (m, 5 H, aryl H).

(b) The Grignard reagent prepared from PhCH₂(BrCH₂)SiMe₂ (39 g, 0.16 mol) in ether (50 cm³) was added dropwise with stirring to a solution of freshly-distilled ethyl chloroformate (26 g, 0.24 mol) in ether (400 cm³) at such a rate as to maintain gentle reflux. The mixture was then refluxed for 6 h. After addition of 3 *M* aqueous HCl, separation, washing (aq. Na₂CO₃ then H₂O), drying (Na₂SO₄), and evaporation of the ethereal layer, the residue was fractionally distilled to give PhCH₂SiMe₂(CH₂COOEt) (50%), b.p. 130–132°C/4.5 mmHg, n_D^{22} 1.5006, ν (CO) 1715s cm⁻¹; ¹H NMR (CCl₄) δ –0.03 (s, 6 H, SiMe₂), 1.12 (t, 3 H, CH₃), 1.70 (s, 2 H, CH₂CO), 2.07 (s, 2 H, PhCH₂), 3.95 (q, 2 H, CH₂O), 6.95–7.00 ppm (m, 5 H, aryl H) (Found: C, 66.3; H, 8.5. Calcd. for C₁₃H₂₀O₂Si: C, 66.05; H, 8.5%).

(c) A solution of PhCH₂SiMe₂(CH₂COOEt) (10 g, 0.04 mol) in ether (15 cm³) was added dropwise with stirring and ice-cooling to a suspension of LiAlH₄ (1.4 g, 0.037mol) in ether (40 cm³). The mixture was then stirred for 2 h at room temperature, and the excess of LiAlH₄ was destroyed by cautious addition of moist ether followed by water, with cooling in solid carbon dioxide. Further ether was added and the ether layer was separated, washed, dried (Na₂SO₄) and evaporated, and the residue was fractionally distilled to give PhCH₂SiMe₂-(CH₂)₂OH (6.0 g, 74%), b.p. 97–98° C/0.8 mmHg, n_D^{22} 1.5215; ν (OH) 3325(br) cm⁻¹; ¹H NMR (CCl₄), δ –0.13 (s, 6 H, SiMe₂), 0.75 (t, 2 H, CH₂Si), 1.95 (s, 2 H, PhCH₂), 3.05 (s, 1 H, OH), 3.50 (t, 2 H, CH₂O), 6.90–7.02 ppm (m, 5 H, aryl-H) (Found: C, 68.2; H, 9.3. Calcd. for C₁₁H₁₈OSi: C, 68.0; H, 9.3%).

Preparation of PhCH₂SiMe₂(CH₂)₃OH

(a) The hydride PhCH₂SiMe₂H was prepared in 67% yield by a published procedure [3]; it had b.p. 72°C/18 mmHg, $n_{\rm D}^{25}$ 1.4990 (lit. [3], b.p. 70°C/15 mmHg; $n_{\rm D}^{25}$ 1.4990); ν (SiH) 2100(s) cm⁻¹.

(b) A mixture of PhCH₂SiMe₂H (11.0 g, 0.070 mol), H₂PtCl₆ in EtOH (0.2 cm³ of an 0.04 *M* solution), and allyl acetate (8.0 g, 0.080 mol) was refluxed for 5 h. Extraction with ether, followed by filtration and evaporation of the ethereal solution left a residue which was fractionally distilled to give PhCH₂-SiMe₂(CH₂)₃OAc (8.8 g, 48%), b.p. 103–105°C/0.5 mmHg, n_D^{22} 1.4980, ν (CO) 1735s cm⁻¹; ¹H NMR (CCl₄), δ –0.17 (s, 6 H, SiMe₂), 0.18–0.47 (m, 2 H, SiCH₂) 1.17 (m, 2 H, CH₂CH₂CH₂), 1.80 (s, 3 H, COCH₃), 1.92 (s, 2 H, PhCH₂); 3.78 (t, 2 H, CH₂O), 6.73–7.07 ppm (m, 5 H, aryl-H).

(c) A solution of PhCH₂SiMe₂(CH₂)₃OAc (5.0 g, 0.02 mol) in ether (60 cm³) was added dropwise to a stirred suspension of LiAlH₄ (1.2 g, 0.031 mol) in ether (60 cm³), and the mixture was subsequently stirred for 3 h at room temperature. The usual work-up, culminating in fractional distillation, gave PhCH₂-SiMe₂(CH₂)₃OH (2.8 g, 67%), b.p. 92–93°C/0.35 mmHg, n_D^{23} 1.5165, ν (OH)

3320(br) cm⁻¹; ¹H NMR (CCl₄) δ 0.02 (s, 6 H, SiMe₂), 0.56–0.77 (m, 2 H, SiCH₂), 1.53–1.80 (m, 2 H, CH₂CH₂CH₂), 2.24 (s, 2 H, PhCH₂), 3.36 (s, 1 H, OH), 3.55 (t, H, CH₂O), 6.89–7.11 ppm (m, 5 H, aryl–H) (Found: C, 69.1; H, 9.7. Calcd. for C₁₂H₂₀OSi: C, 69.2; H, 9.7%).

Rate measurements

The UV spectrophotometric procedures used have been described previously [2]. A wavelength of 274.5 mm was used for both $PhCH_2SiMe_2(CH_2)_nOH$ compounds. In each case the spectrum of the product after 10 half-lives coincided with that of toluene in a similar medium.

Acknowledgements

We thank Drs. D.R.M. Walton and G. Seconi for valuable discussions, and the Dow Corning Company, Ltd., for gifts of organosilicon compounds.

References

- 2 C. Eaborn and F.M.S. Mahmoud, J. Organometal. Chem., 206 (1981) 49.
- 3 O.W. Steward and O.R. Pierce, J. Amer. Chem. Soc., 83 (1961) 1916.

¹ D. Macciantelli, G. Seconi and C. Eaborn, J. Chem. Soc. Perkin II, (1978) 834; C. Eaborn and G. Seconi, ibid., (1979) 203.